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ABSTRACT: Air-stable Rh complexes ligated by strongly
σ-donating cyclic (amino)(alkyl)carbenes (CAACs) show
unique catalytic activity for the selective hydrogenation of
aromatic ketones and phenols by reducing the aryl groups.
The use of CAAC ligands is essential for achieving high
selectivity and conversion. This method is characterized by
its good compatibility with unsaturated ketones, esters,
carboxylic acids, amides, and amino acids and is scalable
without detriment to its efficiency.

Selective hydrogenation is one of the most powerful and
useful reactions because of its synthetic significance in the

creation of pharmaceuticals, materials, and fundamental
feedstock chemicals.1,2 Despite considerable achievements,
chemoselectivity has long been a prominent obstacle when
several unsaturated scaffolds are present in the same
substrates.3 Compared with polar carbonyls, the aromatic
hydrocarbons are difficult substrates for hydrogenation,
probably because of the stability caused by aromaticity.4,5 As
a result, the hydrogenation of aromatic ketones often leads to
aryl-containing alcohol products via a preferential carbonyl
reduction (Scheme 1a, path a).6 In contrast, switching the
selectivity to realize arene hydrogenation while retaining an
easily reducible carbonyl is more challenging and has not been
achieved with structurally well-defined homogeneous catalysts

to date (Scheme 1a, path b).7 Another key problem is inhibiting
the reduction of the resulting ketones to alcohols or
dehydroxylated products (e.g., 4a and 5a). Especially for
naturally abundant phenols, efficient strategies for reducing
them to cyclohexanones by avoiding a carbonyl reduction are
rare (Scheme 1b).8,9 From both sustainable and synthetic
points of view, developing a general protocol to address these
selectivity challenges would help advance clean chemical
syntheses.
Recently, there has been significant progress in the rational

design of effective organometallic catalysts using σ-donating N-
heterocyclic carbenes (NHCs),10,11 and a number of elegant
examples of NHC ligand-promoted hydrogenation have been
reported by Glorius,12 Stephan,13 Crabtree,14 and others.15

Differing from classic NHCs, cyclic (amino)(alkyl)carbenes
(CAACs) show an enhanced nucleophilicity because of a σ-
donating alkyl substituent, which was discovered by Bertrand
and has received increasing interest recently.16,17 However, the
ligand effect of CAACs in organometallic catalysis has rarely
been studied.18 Herein we report the first CAAC ligand-
enabled, highly selective hydrogenation of aromatic ketones
and phenols with rhodium (Scheme 1). This method retains a
synthetically valuable carbonyl group in the products, thus
offering a straightforward and clean route to cyclohexyl-
containing ketones and cyclohexanones, which are fundamental
feedstock materials and widely used as key precursors to
industrially important molecules such as caprolactam and adipic
acid.19

To ensure that the arene hydrogenation occurs preferentially
over that of ketones, a suitable catalyst that allows interaction
with the aryl group via a π-coordination is required. We
postulated that electron-rich CAAC ligands, with their strong σ-
electron donation to the metal center, might enhance the
interaction of the metal with the aryl by the back-donation of
electron density from the filled d orbitals of the metal into the
unoccupied π*aryl antibonding orbital.12b This may favor the
arene hydrogenation with H2. Meanwhile, the electron-rich
metal may be expected to show rather low oxophilicity.20

Compared with other transition metals, rhodium shows high
reactivity toward arene hydrogenation.1 At the outset, the
impact of Rh complexes on the selective hydrogenation of
propiophenone was evaluated (Table 1). In the presence of
Wilkinson’s catalyst, a trace amount of the aryl-reduced product
3a was detected by GC-MS analysis (entry 2). Similar results
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Scheme 1. Selective Hydrogenation of Aromatic Ketones
and Phenols
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were obtained using [Rh(cp*)Cl2]2 and RhCl3·H2O (entries 3
and 4). A complex of [Rh(COD)Cl]2 improves the reaction to
give 3a in 29% yield, but with various byproducts of 2a, 4a, and
5a (entry 5).
Next, the effect of electron-donating NHC ligands on the

selective hydrogenation was explored. Unfortunately, the
rhodium complex prepared in situ by treating [Rh(COD)Cl]2
with IMes·HCl or IPr·HCl results in low conversions (entries 6
and 7). In sharp contrast, a more nucleophilic CAAC bearing a
2,4-dimethylcyclohexenyl substituent adjacent to the carbene
center dramatically improves the conversion, giving the desired
product 3a in 80% yield with high selectivity (entry 8). To
identify the coordination mode of Rh with the CAAC ligand
before catalysis, the CAAC-Rh complexes were prepared by a
two-step operation (Scheme 2). Note that the complexes are
air-stable and could be isolated by column chromatography.
The 13C NMR spectra show a greater downfield shift of the
resonance for the carbene carbons (274.7 and 272.9 ppm) than
that of classic NHCs (≈ 190 ppm).21 The structure of the
(CAAC-2)Rh(COD)Cl complex was fully characterized by
single-crystal X-ray diffraction, evidencing a slightly shortened

Rh−Ccarbene bond (2.0128(16) Å).22 We were pleased to find
that these structurally well-defined complexes show high
catalytic activity for aryl-selective hydrogenation, leading to
3a in excellent yield and selectivity (entries 9 and 10).23,24

This discovery led us to probe the scope of the aryl-selective
hydrogenation using active (CAAC)Rh(COD)Cl complexes
(Scheme 3). The phenyl group could be introduced at the α- or
β-position of the ketone with no effect on its hydrogenation
and retains the carbonyl intact (3c and 3d). The bisphenyl
fragments could be reduced simultaneously, allowing the rapid
buildup of complex biscyclohexyl structural motifs (3e−3h). As
expected, fused biscyclic ketones 3k−3n are easily accessible
from readily available benzocyclic precursors. Interestingly, the
reactions with conjugated chalcones result in a synchronous
hydrogenation of the unsaturated phenyl and alkenyl (3o−3q).
It is particularly noteworthy that the approach uniformly retains
the CO moiety and generally achieves high conversion (76−
99%). For instance, the aromatic rings on the ester and
carboxylic acid can be reduced effectively, while keeping
reactive alkoxycarbonyl and carboxyl intact (3r and 3s).
Strikingly, the hydrogenation tolerates the synthetically valuable
amidyl group, forming substituted amides such as cyclohexane-
carboxamide, hexahydro-1H-indol-2(3H)-one, and N-
cyclohexylacetamide in 95−99% yields (3t−3v). In addition,
the motifs of N-protected amino acids are also perfectly
retained, offering a new avenue to functionalize phenyl-
substituted amino acids (3w and 3x).
Inspired by these results, we examined the efficiency of this

CAAC-Rh catalyst system in the selective hydrogenation of
phenols to cyclohexanones. Gratifyingly, the (CAAC-1)Rh-
(COD)Cl complex shows high reactivity in phenol hydro-
genation in a mixed solvent of trifluoroethanol and water (ratio
of 19:1), exclusively producing the product 7a in almost
quantitative yield (Scheme 4).25 Common substituents such as
methyl, isopropyl, tert-butyl, and methoxy on the phenols did
not significantly interfere with the performance of the
complexes (7b−7i). Importantly, the reaction with sterically
hindered di- and trisubstituted phenols proceeded smoothly
(7j−7m). Interestingly, unsaturated phenol and phenyl are
hydrogenated together in the reaction (7n). Furthermore,
polycyclic and heterocyclic substrates, such as naphthols, 2-
hydroxypyridine, and 2-hydroxyquinoline, are amenable to the
transformation, giving the related ketones and lactams in good
to excellent yields (7o−7r). Notably, the protocol can be
successfully applied to the selective reduction of bioactive
estrone, allowing access to functionalized bisketone 7s.

Table 1. Influence of Rhodium Complexes on the Aryl-
Selective Hydrogenation of Propiophenonea,b

aConditions: 1a (0.1 mmol), Rh complex (0.003 mmol), 4 Å MS (50
mg), CF3CH2OH (2.0 mL), and H2 (0.5 MPa) at room temperature
for 24 h. bYields were determined by 1H NMR analysis. cNot detected.
d[Rh(cp*)Cl2]2 or [Rh(COD)Cl]2 (0.0015 mmol) was used.
e[Rh(COD)Cl]2 (0.0015 mmol), iminium salt (0.004 mmol), and
NaOtBu or LDA (0.004 or 0.008 mmol) in hexane or THF (2.0 mL)
were stirred at 70 °C for 12 h. After the solvent was removed, the
mixture was used directly. fIsolated yield on 0.5 mmol scale.

Scheme 2. Synthesis of CAAC-Rh Complexes
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Finally, the selective hydrogenation is scalable and can be
conducted on the 10-g scale with a 0.23 mol % loading of
CAAC-Rh complex, forming 3d in 88% yield with a turnover
number (TON) of 382 (Scheme 5).
In summary, we have developed an efficient CAAC-Rh

catalyst system for the hydrogenation of aromatic ketones and
phenols to cyclohexyl-containing ketones and cyclohexanones,
through the selective reduction of the aryl scaffolds while
retaining functional carbonyl groups. The unique electronic
structural properties of CAAC ligands open up a new
opportunity for significantly improving selectivity and con-
version by ligating to rhodium, achieving high compatibility
with a variety of CO-containing structural motifs, such as
ketones, esters, carboxylic acids, amides, and amino acids.

Further studies on the mechanistic understanding of the role of
CAAC ligands and exploring chiral catalyst systems are
underway.
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Scheme 3. Substrate Scope for CAAC-Rh-Catalyzed Aryl-
Selective Hydrogenationa

aConditions: 1 (0.5 mmol), (CAAC-1)Rh(COD)Cl (0.015 mmol), 4
Å MS (250 mg), CF3CH2OH (10 mL); reaction was conducted under
the conditions listed in each case at room temperature for 24−48 h.
Isolated yields. b(CAAC-2)Rh(COD)Cl was used. cGC yields of the
compounds that were formed by the hydrogenation of the aromatic
ring and carbonyl synchronously. dGC yields of the products that were
formed by the reduction of one benzene ring. eThe diastereomeric
ratio was determined by HPLC analysis. fTrace amount of the starting
materials was detected.

Scheme 4. CAAC-Rh-Catalyzed Selective Hydrogenation of
Phenolsa

aConditions: 6 (0.1 mmol), (CAAC-1)Rh(COD)Cl (0.003 mmol),
CF3CH2OH/H2O (2.0 mL), and hydrogenation was conducted under
the conditions listed in each case at 70 °C for 24 h. The yield was
determined by GC analysis. bThe recovery of the starting materials.
cGC yields of the related cyclohexanol compounds. d6 (0.5 mmol),
(CAAC-2)Rh(COD)Cl (0.015 mmol), and CF3CH2OH/H2O (10
mL) were used. eIsolated yields are given in parentheses. f6l (0.5
mmol). g48 h. h(CAAC-1)Rh(COD)Cl (0.025 mmol) was employed,
and the diastereomeric ratio was determined by HPLC analysis.

Scheme 5. Gram-Scale Hydrogenation of 1d
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P. Chem. Rev. 2009, 109, 3612−3676. (d) Riener, K.; Haslinger, S.;
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